Re: Jones probability revisited
Posted by Roger Hunter on October 10, 2013 at 23:57:52:

Brian;

There are two tests of significance which may be used, depending on the circumstances.

If all predictions have the same probability the z-binomial test may be used. This is a standard test of significance and may be found on the VassarStats website as an interactive applet.

If each prediction has a different probability the method devised By Dr Jones will be used. This procedure assigns a score to each prediction. If the prediction is correct the score is -ln(p) and if it's incorrect the score is ln(1-p), where ln is the natural log and p is the probability of success. Each prediction has an expected value which is -p*ln(p) + (1-p)*ln(1-p) and a variance which is p*(1-p)*(ln((p)*(1-p)))^2.

These values are summed and the standard deviation is the square root of the variance. The final answer is (score-expected)/standard deviation. This quantity is normally distributed so the significance is determined by comparing it to a table of the normal distribution.

Clear?

Roger


Follow Ups:
     ● Re: Jones probability revisited - Skywise  01:14:29 - 10/11/2013  (101039)  (2)
        ● Re: Jones probability revisited - Skywise  16:12:09 - 10/11/2013  (101042)  (1)
           ● Re: Jones probability revisited - Skywise  17:16:18 - 10/11/2013  (101043)  (1)
              ● Re: Jones probability revisited - Roger Hunter  18:12:29 - 10/11/2013  (101044)  (1)
                 ● Re: Jones probability revisited - Skywise  18:29:46 - 10/11/2013  (101045)  (1)
                    ● Re: Jones probability revisited - Roger Hunter  18:40:24 - 10/11/2013  (101046)  (0)
        ● Re: Jones probability revisited - Roger Hunter  11:04:02 - 10/11/2013  (101040)  (0)